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By using a modification of the method in [i] an asymptotic is constructed for the 
solution of the first bending boundary-value problem (the deflection and angle of rotation 
are given on the boundary) for a sector of a cylindrical orthotropic ring under the assump- 
tion that the bending stiffness in the circumferential direction is considerably greater than 
the bending stiffness in the radial direction. Application of the method in [i] is made 
complicated in this situation by the presence of angular points in the domain, which results 
in the appearance of boundary layer functions of two different kinds in the asymptotic: one 
described by ordinary differential equations along the characteristic part of the boundary, 
and the other described by partial differential equations and concentrated near the angular 
points. The single boundary-value problem for partial differential equations known to the 
author was studied in [2]. The situation in [2] is simpler than the situation in this paper 
since the order of the equation is reduced in [2] for e = 0. 

i. Let Q be a domain of the following kind: Q = {(r, 0), 0 < a ~ r ~ b, 0 ~ O ~ c}. 

Let us introduce the dimensionless radial coordinate x = in(r/a) and let us put Xo = in (b/a), 
~2 --1 --1 --1 

= DIID22, b12 = DI2D11, b66 = D66D11, m = 2(b12 + 2b6~), where D.. are the plate bending 
12 

stiffnesses. The bending equation for a cylindrical orthotropic plate under the assumption of 
validity of the Kirchhoff--Love hypotheses has the form [3] 

o %  ~ o~w ~ o~w ~ o~ ~ [o% ~ o %  ~ o%'1 ow ~ ( o %  ~ o ~  ~ o~w ~ \  I (I.i) 
004 q- 2 00~ --  Ox2 -i- 2 ~  -}- e~ L'~x~ - - 4  0x""T -[- 5 7x~ - -  2"-~-x -J-m_ ~ - - 2 ~ $ - ~ +  O---~-)]:/" 

Let us pose the boundary value problem A for (i.i): 
g 

O we Ow e (i. 2) 
w ~ (z,  O) = 11 (~), ~e (x, c) = / 2  (x), - ~ -  (x, O) = 18 (x), - ~ -  (x, c) = 1~ (~); 

w~(O, O)= g~(O), we(xo, O)= g2(O); (1.3) 

Ow e Ow ~ 
0--7 (o, o) = g~ (o), -gT-x (~o' o) = g ,  (o). ( 1 . 4 )  

Q. 

We shall henceforth perform the whole examination by using formal power series in 
It is assumed that ]~C~(Q UOQ), g~(0),fh (O)~C~(OQ), k = ~, 2, 3, &, OQ is the boundary of the domain 

We seek the approximate solution of the problem A in the form 

w~ = ~ 8~w~(z,O). 
(1.5) 

n~O 

Substituting (1.5) into (i.i) and collecting like terms in identical powers of g, we 
obtain a recurrently related system of equations 

L(wo) = /, L(wJ ~ O, L(w~) + M(wn_ 2) = O, n ~ 2 ,  (1 .6 )  

where L(w) = 34w/~04 + 2~2w/3e 2 -- 32w/3x 2 + 2~w/3x; M(w) is a differential operator in the 
2 power in (i.i). The limit boundary-value problem Ao is to solve the equations L(wo) = f 
under the boundary conditions (1.2), (1.3), where w s should be replaced by Wo. Let us note 
that the boundary conditions (1.4) are not generally satisfied here since the equations for 
w n from the system (1.6) are of second order in the variable x and not the fourth. To compen- 
sate the residuals that occur, boundary-layer functions must be constructed near the sides 
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X = 0, Xo. 

Let us construct the boundary-layer functions near the side x = 0 (they are constructed 

analogously near the side x = Xo upon introducing the stretched coordinate tx = (Xo - x)/s). 

Near x = 0 we introduce the stretched coordinate t = x/g, and substituting x = ts in the 

homogeneous equation (i.I), we obtain 

g--2 
804 

Oew Oew 8w ) ~- s -  ~ Otw 8aw . _ .  02_~w 
-I- 2 O0---~z -- e -2 ~ -~- 2s -1 ~ Ot'- T -- 4e -a ~-~ j-  ok = at 2 --  

--2e-1~tt -~- m c)O--rz e - 2  - o2wot 2 -- 2~ -1-~ + w = 0 .  

( 1 . 7 )  

We seek the approximate solution of (1.7) in the form 

w 1 (t, O) = e ~ enw (t, 0). (1. 8) 
n,O 

~t~O 

Substituting (1.8) into (1.7) and collecting terms in coincident powers of s we obtain 

the recurrently related system of equations 

2 

84a,0,0 O"WO, 0 84Wn,O 0 W~,O M o (Wn_l,0, WO,O), n ~  t. (1.9) 
8t a - -  Ot 2 ~--- O, 8t ~ - -  Ot ~ . . . .  ' 

The s p e c i f i c  f o r m  o f  t h e  d i f f e r e n t i a l  o p e r a t o r s  M ~ i s  n o t  e s s e n t i a l  h e n c e f o r t h  and  i s  e a s i l y  
n 

r e s t o r e d  f r o m  ( 1 . 7 ) .  We r e q u i r e  t h a t  t h e  sum w ~  0) + w ~ ( t ,  O) s a t i s f y  t h e  b o u n d a r y  c o n d i -  

t i o n s  ( 1 . 4 ) ,  ( 1 . 3 )  a t  x = O. We h e n c e  o b t a i n  t h a t  t h e  f u n c t i o n s  Wn(X, 8 ) ,  Wn, o ( t ,  O) s a t i s f y  

t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  f o r  x = 0 f o r  t = O: 

~Wo, 0 Ow 0 ~wn, 0 Ow n 
~t (o, o) g3 (o) - -  ~ (o, o), - T F -  (o, o) = - ~ (o, o), ( 1 . 1 0 )  

w(O, O)=--wn_l,o(O, 0), n~> 1. 

For complete definiteness of the function w (x, 8) it is necessary to require that for n _> 1 
n 

ahwn 0kw, (i ii) 
7 ~  ( ~ 1 7 6 1 7 6 1 7 6  k=0,  t. 

As f o l l o w s  f r o m  [1]  and t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 1 0 ) ,  t h e  f u n c t i o n s  w ( t ,  0) h a v e  
the form n,o 

n--i 

w,, o ( t , 0 ) =  ~ r t exp(--t)  
~--0 

and a r e  d e t e r m i n e d  u n i q u e l y  f r o m  e q u a t i o n s  ( 1 . 9 )  u n d e r  t h e  a s s u m p t i o n  t h a t  w (+~o 0) = 0 .  
n , o  

The c h a r a c t e r i s t i c  e q u a t i o n  k 2(12 --  1) = 0 f o r  t h e  s y s t e m  ( 1 . 9 )  h a s  one  r o o t  w i t h  n e g a t i v e  

r e a l  p a r t ;  t h e r e f o r e ,  t h e  d e g e n e r a t i o n  o f  t h e  p r o b l e m  A i n t o  t h e  p r o b l e m  Ao i s  r e g u l a r  [ 1 ] .  

A n a l o g o u s l y  t o  t h e  a b o v e ,  a b o u n d a r y  l a y e r  f u n c t i o n  W n , l ( t ~  , 0) c an  be  c o n s t r u c t e d  n e a r  t h e  

s i d e  x = Xo. M u l t i p l y i n g  w ( t ,  0) and w ( t l ,  0) b y  t h e  t r u n c a t i n g  f u n c t i o n s  n and  ~ [ 1 ] ,  
n,o n,~ 

which are noticeably different from zero only near the sides x = 0 and x -- xo, respectively, 
we obtain an asymptotic expansion of the problem A in the form 

S 

~ 0  ~ 0  

However, we note that the representation (i.12) of the solution of the problem A s inserts 

a residual in the satisfaction of the boundary conditions for 0 = 0, c. Indeed, for ~ = 0 the 

equality 
oo oo 

~ n  (x, 0> + ~ ~ n  [ ~ , 0  (t, 0) + ~wn,~ (q, 91 =/~ (~> 
n~O n=O 
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should hold, and we consequently have for n ~ 1 

Wn(x,O ) = _ ~w~_Lo(t,O ) - - ~ h ~ _ m ( q , O ) ,  

which contradicts (i.ii) since the boundary conditions for the functions w (x, 0) 
depend on s. n 

2. Let us construct an angular boundary-layer function near the point (0, 0) 
constructed analogously near other points). 

Near the point (0, 0) we introduce the stretched coordinates t = x/g, T = e/~s and by 
substituting x = t~, 0 = T~in the homogeneous equation (i.i) we obtain 

should not 

(they are 

O--- 7--{-23 -~ Or 2 - - ~  Ot 2 +23  =1~- -~3-4 Ot ~ - -  

_43_3 O3w _~ a~__~w 02 ( a2w ow ) 
--Ot 3 -I-53 z Ot 2 ~_ ms--l ~ 3 - 2 - O r  z --28 - 1 ~ +  w = 0. 

(2.1) 

We seek the approximate solution of (2.1) in the form 

w2(t, T ) = e  2 8~/2Pn,o(t'T)' ( 2 . 2 )  

Substituting (2.2) into (2.1) and presenting similar terms, we obtain a recurrently re- 
lated system of equations 

04po,o/O~ + 04Po,o/Ot ~ --  02po,o/Ot 2 = O, ( 2 . 3 )  

04Pn,o/O~ + 04Pn,o/Ot4 - -  02Pn,o/Ot2 : Qn(pn_l,O, �9 �9  po,o), n ~ t. 

The differential operators Qn are easily reproduced from (2.1); their specific form is 

not essential for the sequel. We require that the sum 

oo 

(2.4) 

satisfy the boundary conditions of the problem A for 8 = 0 and x = 0. 
S 

conditions for the functions Pn,o(t, T) for t = 0 and T = 0.. 

Pn,o (0, r) = ~ (0, T) =0,  n~O, 

P2~,0 (t, O) = --  w~, o (t, 0), P2~+1,o (t, O) = O. 

P~ Own 0 OPzn+l'~ (t, O) -- --  ' (t, 0). O ,o(t,O) = 0 ,  Or O0 

S i n c e  e q u a t i o n s  ( 2 . 3 )  a r e  e l l i p t i c  and  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 2 . 5 )  i s  c o r r e c t ,  
s o l u t i o n s  P n , o ( t ,  T ) ,  n = O, 1 . . .  e x i s t  and  a c c o r d i n g  t o  [4]  t h e  i n t e g r a l  

We hence have boundary 

(2.5) 

the 

q=. ~ p,,,. (t,~) / t  dr 

is finite for them, where K is a quadrant K = {(t, T); t > 0, T > 0}. As t * +~ the Pn,o(t, T) 

decrease exponentially. Multiplying the third term in (2.4) by a truncating function that is 
noticeably different from zero only near the apex of the angle (0, 0), we obtain an asymptotic 

expansion of the problem A near the apex of the angle. 
s 

Therefore, the complete asymptotic expansion of the problem A s consists of seven series; 
the series (1.5) describing the fundamental state of stress, two series describing the bound- 
ary layer along the characteristic part of the boundary, and four governing the angular 
boundary layers. 

Let us note that for sufficiently high smoothness of the boundary data, the asymptotic 
expansion of the problem A allows differentiation and permits the construction of asymptotic 

S 
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expansions for the forces, moments, and transverse forces. Let c 0 denote the circumferential 
strain. If a0(w n) # 0, n = 0, i, then the asymptotic expansions of the moment M e and the 

transverse forces Nr, N O start with the power a -2. 

For s0(w n) = 0, n = 0, 1 the plate is inextensible in the circumferential direction. 

In conclusion, we note that the asymptotic for the problem of bending a symmetrically 
assembled anisotropic rectangular laminar shell [5] under strictly nonzero steepness of the 
family of bonding fibers can be constructed completely analogously (in a formal complication 
of the computations). 
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STABILITY OF MAGNETIC SUSPENSION IN A DIRECT-CURRENT MAGNETIC FIELD 

N. N. Kozhukhovskii and V. I. Merkulov UDC 531.36:538.31 

The problem of suspension of a body for a lengthy period of time using permanent magnets 
has attracted the interest of researchers. A detailed bibliography of studies of this problem, 
an analysis of the state of the art, and original results have been presented in [i, 2]. 

The major result achieved has been Ernshaw's theorem, which indicates the instability of 
such suspension. However this theorem is concerned with steady state situations, and as we 
will demonstrate below, is inapplicable to dynamic systems. 

i. We will consider the configuration of magnets shown in Fig. i. We will consider 
motion of an infinitely long rod in the magnetic channel along the axis Ox. The weight of 
the rod P = mg is compensated by magnets of one sign 1 or 2. Along the channel sides there is 
a system of permanent magnets of alternating polarity, which interacts with a similar system 
located on the rod. We will assume that the pole step along the axis Ox is equal to ~ = 2~/k, 
where k is the wave number. We will assume the magnetic material to be saturated with a value 
of ~ = 1 (where p is the relative permittivity), as in a vacuum. Considering further that 
magnet system 3 has a vertical length, we will neglect forces produced by interaction of mag- 
nets 3 and 4 during vertical oscillations of the rod. 

We will now perform some preliminary calculations. At the point Mo(xo, yo, zo) let there 
be some magnetic charge q. Its potential at the point M(x, y, z) is equal to U = q/4~or, 
r 2 = (x -- Xo) 2 + (y -- yo) 2 + (z -- zo) 2, where Do is the absolute magnetic permittivity of free 
space. The force produced by interaction of two charges q+, q- located at these points is 
given by the expression 

t q+q- 
F - - -  - -  

4~,u o r 2 

and is directed along the vector joining the charges. 

We will consider an infinite magnetic pole located along the axis Oz. For an element of 
the pole dz the magnetic charge is equal to dq = y+dz, where T + is the linear charge density~ 
The force of interaction with an analogous elementary charge sectioned from another magnetic 
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